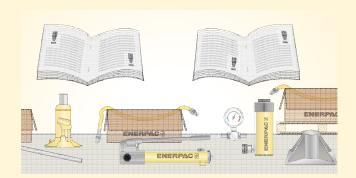


Enerpacs 'Gelben Seiten'stehen für hydraulische Informationen!

Wenn die hydraulischer Auswahl Ausrüstungen nicht zu Ihren täglichen Arbeitsaufgaben gehört, werden Sie die folgenden Seiten sicher zu schätzen wissen. Sie werden Ihnen die Grundlagen der Hydraulik vermitteln und ferner, wie man Hydrauliksysteme zusammenstellt und die häufigst vorkommenden Techniken der Hydraulik erklären. Je sorgfältiger Sie Ihre Ausrüstung wählen, um so mehr praktische Vorteile werden Sie daraus Nehmen Sie sich Zeit, um die nützlichen Informationen auf den vorliegenden 'Gelben Seiten' durchzulesen. Dann bieten Enerpacs Hochdruck-Hydraulikausrüstungen Ihnen noch mehr Vorteile.


Weltweite Garantie

Informationen zur weltweiten Lebensdauergarantie erhalten Sie auf unserer Website oder bei Ihrem autorisierten Servicecenter.

Erfahren Sie mehr über Hydraulik

Besuchen Sie uns unter www.enerpac.com dort erfahren Sie mehr über die Hydraulik und die Systemauslegungen.

Übersicht über die 'Gelben Seiten'

Katalogteil		Seite
Sicherheitsanweisungen		396 ▶
Auswahl von Pumpen Produktwahl-Arbeitsblatt	parties of the state of the sta	398 > 399 >
Grundlagen der Einrichtung hydraulischer Systeme		400 ▶
Grundlagen der Hydraulik	TID IN THE PROPERTY OF THE PRO	402 ▶
Umrechnungstabellen Geschwindigkeitstabellen		404 > 405 >
Informationen zu Ventilen Sechskant-Bolzen & Muttern	A T	406 > 407 >
Drehmomentverschraubung Vorspanntechnik	***	408 > 410 >
INFORMATE: Verschraubungssoftware	i de la	412 🕨
Enerpac Academy EMP: präventives Wartungsprogramm		414 ► 415 ►

Enerpac ist nach mehreren Qualitätsstandards zertifiziert. Diese Standards erfordern die Einhaltung von Standards für Management, Verwaltung, Produktentwicklung und Fertigung. Stetig um Verbesserungen bestrebt, hat Enerpac große Anstrengungen unternommen, um die Qualitätsanforderungen nach ISO 9001 zu erfüllen.

DIN-ISO 1402

Die thermoplastischen Schläuche von Enerpac erfüllen alle Ansprüche dieser Normen.

ASME B30.1-2015

Mit Ausnahme der Serien RD, BRD, HCL, LPL, CUSP und JHA, erfüllen unsere Hydraulikzylinder alle Anforderungen der amerikanischen Normen des American National Standards Institute.

Konstruktionskriterien der Produkte

Sofern nicht ausdrücklich anders angegeben, sind alle Hydraulikbauteile für einen maximalen Betriebsdruck von 700 bar (10.000 psi) ausgelegt.

Wo angegeben, entsprechen die Elektrogeräte von Enerpac den Anforderungen, die vom kanadischen Normungsinstitut Standards Council of Canada (CAN C22.2 Nr. 68-92) und im Rahmen der UL73 für die Vereinigten Staaten von Amerika an die Ausführung, Montage und Tests der Produkte gestellt werden. Die Geräte wurden für sowohl die USA als auch für Kanada durch den TÜV und von USA-OSHA-NRTLs (Nationally Recognised Testing Laboratories).getestet und zertifiziert.

EMC-Richtlinie

Wenn spezifiziert, erfüllen Enerpac Elektropumpen die Anforderungen der Richtlinie 2014/30/EU für elektromagnetische Kompatibilität.

ATEX 95-zertifiziert

Die Drehmomentschlüssel der S-, W-, DSX- und HMT-Serien, die luftbetriebenen Pumpen der

ATP-Serie, die SWi-Ex-Flanschspreizer, die HP-Ex-Handpumpen und die Schläuche des Typs 144 wurden entsprechend der "ATEX-Richtlinie" 2014/34/EU getestet und zertifiziert. Der Explosionsschutz gilt für Gerätegruppe II, Gerätekategorie 2 (Gefahrenzone 1), in gas- bzw. staubhaltigen Umgebungen.

Drehmomentschlüssel der Serien:
S- und W:
DSX- und HMT:
NSH-Muttersprenger:
Pumpen ZA4-, ZA4T:
ZA4TX-QROP-Pumpe:
Ex II 2 GD ck T4
Ex II 2 GD ck T4
Ex II 2 GD ck T4

Pumpen ATP, XA-Serie: Ex IIIC T135°C Dc
Pumpen LAT-Serie: Ex II 2 GD ck T4
Pumpen LAT-Serie: Ex IIC T4 Gc und
Ex IIIC T135°C Dc

SWi-Ex-Spreizer: II 2G Ex h IIB T5 Gb und II 2D Ex h IIIC T85°C Db

HP-Ex-Handpumpen: II 2G Ex h IIB T5 Gb und

II 2D Ex h IIIC T100°C Db 144-Schläuche: II 2G Ex h IIB T5 Gb und II 2D Ex h IIIC T100°C Db

Sicherheitsanweisungen

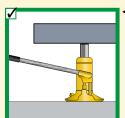
ENERPAC.

Hydraulische Kraft ist eine der sichersten Kraftquellen, vorausgesetzt, daß sie richtig eingesetzt wird und

einige einfache Vorsichtsmaßregeln beachtet werden, die für nahezu alle hydraulischen Systeme gelten.

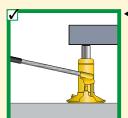
- Lasten stets langsam heben und den Druck oft kontrollieren
- Niemals in der Kraftlinie stehen
- Mögliche Probleme voraussehen und Maßnahmen zur Vermeidung dieser einleiten.

Die Zeichnungen und Fotos der Anwendungen von Enerpac Produkten in diesem Katalog dienen der Darstellung, wie unsere Kunden ihre hydraulischen Systeme in verschiedenen Anwendungsbereichen der Industrie eingesetzt haben.


Beim Entwurf ähnlicher Systeme müssen Sie darauf achten, die richtigen Komponenten auszuwählen, die zu Ihrem spezifischen Bedarfsfall passen, so daß ein sicherer Betrieb gewährleistet ist. Kontrollieren Sie, daß alle Vorsichtsmaßnahmen getroffen wurden, um Verletzungsgefahren durch und unnötige Schäden an Ihrer Anwendung bzw. Ihrem System zu vermeiden.

Enerpac übernimmt keinerlei Haftung bei Schäden oder Verletzungen, die auf die unsachgemäße Nutzung, Wartung oder Verwendung seiner Produkte zurückzuführen sind.

Wenden Sie sich bitte an Ihre Enerpac-Vertretung, wenn Sie Fragen hinsichtlich der Sicherheitsbestimmungen haben.


Heber

 Stellen Sie den Sockel des Hebers ganz auf einen ebenen Grund mit ausreichender Tragfähigkeit.

Das gesamte
 Druckstück muß
 Kontakt mit der
 zu hebenden
 Last haben.

Arbeiten Sie nie unter Lasten. Die Last muß abgestützt sein.

Entfernen Sie den Heber, wenn der Handgriff nicht betätigt wird.

Zylinder

Stellen Sie die Fußplatte des Zylinders auf einen ebenen Grund mit ausreichender Tragfähigkeit.

Stellen Sie bei doppeltwirkenden Zylindern sicher, dass beide Kupplungen angeschlossen sind. Stellen Sie sicher, dass der Rücklaufschlauch montiert ist.

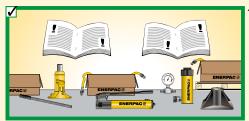
Verwenden Sie die Zylinder nicht ohne Druckstück. So vermeiden Sie Stauchverformungen des Zylinderkolbens.

◆ Arbeiten Sie nie unter Lasten, die von Zylindern gehoben werden. Die Last muß abgestützt sein.

 Schützen Sie die Gewinde der Zylinder, da sie zum Befestigen von Zubehör erforderlich sind.

■ Halten Sie die Hydraulikausrüstung fern von offenem Feuer und Temperaturen von über 65 °C (150 °F).

Sicherheitsanweisungen



Grundsätzliche Regeln

Die hier angegebenen Werte für Lasten und Hubhöhen sind max. Sicherheitswerte. Hydraulikausrüstungen nur mit 80% dieser Werte belasten!

■ Die Sicherheitsanweisungen und -warnungen, die mit Ihrer Enerpac Hydraulikausrüstung geliefert werden, sorgfältig lesen.

Nie die werkseitige Einstellung von Druckbegrenzungsventilen überschreiten. Immer ein Manometer verwenden.

Pumpen

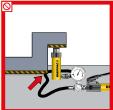
Keine Handhebelverlängerer verwenden. Beim richtigen Einsatz sollten Hand-pumpen jederzeit leicht zu bedienen sein.

■ Das Druckbegrenzungsventil nur mit der Hand anziehen. Vermeiden Sie zu festes Anziehen, da das Ventil dadurch beschädigt werden kann.

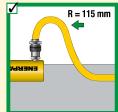
1 Pumpen nur bis zum empfohlenen Pegel füllen. Das Nachfüllen sollte nur bei ganz eingefahrenem Zylinder erfolgen.

■ Nur Original-Enerpac Hydrauliköl verwenden. Falsche Flüssigkeiten können die Pumpe beschädigen und machen die Garantie hinfällig.

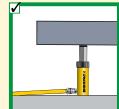
Hydraulikschläuche und Kupplungen



■ Vor dem Anschluß beide Kupplungsteile reinigen.


◄ Hydraulikzylinder nur demontieren, wenn sie ganz eingefahren sind oder Absperrventile bzw. Sicherheitsventile verwenden.

 Achten Sie darauf, daß Hydraulikschläuche außerhalb des Bereichs schwerer Lasten sind.


◄ Hydraulikschläuche niemals knikken. Niemals über die Schläuche fahren und schwere Gegenstände auf die Schläuche fallen lassen.

 Hydraulische Geräte niemals an den Schlauchverbindungen tragen.

 Zylinder dürfen durch die Hydraulikkupplungen niemals angehoben werden.

Auswahl von Pumpen

ENERPAC.

▼ AUSWAHLTABELLE FÜR HANDPUMPEN UND EINFACHWIRKENDE ZYLINDER

Druckkraft ► ▼ Hub	5 t	10 t	15 t	25 t	30 t	50 t	60 t	75 t	100 t	150 t
< 25 mm										
25 mm										
50 mm										
75 mm										
100 mm										
125 mm										
150 mm										
175 mm										
200 mm										
225 mm										
250 mm										
300 mm										
325 mm										
350 mm										
		Pas		7	P880			P4652		
		Seit	te: / 76	Sei	te: / 78				Seite	e: / 78

Hinweis: Die Auswahl basiert auf den Anforderungen an das Ölvolumen der Zylinder.

▼ AUSWAHLTABELLE FÜR ANGETRIEBENE PUMPEN

Fördervolumen *	Niec (0,1 - 0,5	•	Mit (0,5 - 2,0		Hoch (2,0 - 4,2 L/min)			
Tankinhalt	1,9 - 3,8 Liter	3,0 Liter	4,6 - 39 Liter	4,6 - 39 Liter	9,8 - 39 Liter	9, 20, 135 Liter		
Betriebsart **	Intermittierend	Kontinuierlich	Intermittierend	Kontinuierlich	Kontinuierlich	Kontinuierlich		
Tragbarkeit ***	Tragbar	Tragbar	Tragbar	Stationär	Stationär	Stationär		
Empfohlene Pumpen	PU-Serie Kompaktpumpe	E-Serie E-Pulse®	ZU4-Serie	ZE3, ZE4, ZE5-Serie	ZE6-Serie	SFP-Serie		
	Seite: 90	Seite: 94	Seite: 98	Seite: 104	Seite: 104	Seite: 336		

- * Fördervolumen
- Abhängig von der Motorleistung
- Beeinflußt direkt die Anforderungen an die Stromversorgung
- Bestimmt die Geschwindigkeit des Zylinders oder des Werkzeugs.
- ** Betriebsart
- Dauerbetrieb = Anwendungen, die eine Pumpenbetriebszeit von mehr als 1 Stunde erfordern
- Intermittierend = Anwendungen, die eine Pumpenbetriebszeit von weniger als 1 Stunde erfordern je nach Tankgröße.

*** Tragbarkeit

Tragbar

- Ergonomisch geformte Tragegriffe
- Flexible Energieanforderungen

Ortsfest

- Montagezubehör
- Erfordert normalerweise gleichmäßige Energieversorgung.

Arbeitsblatt für die richtige Produktwahl

▼ Beantworten Sie nachfolgende Fragen, um das richtige Produkt zu wählen:

Auswählen eines	Frage:	Tips/Hilfe:	Daten	Modellnummer
Zylinders	Erforderliche Gesamtdruckkraft in t:	Gesamtlast		
-,	Erforderliche Anzahl Zylinder:	Anzahl der Hebestellen		
	Kraft je Zylinder in t:	Max. 80% gesamten Druckkraft		
	Erforderlicher Hub:	Kolbenhub		
	Einfach- oder doppeltwirkend (DW)	DW für Zugkraft oder Einfahr-		
	,	geschw. wichtig ist		
	Kolbenstangenausführung:	Hohl oder massiv		
	Eingefahrene Bauhöhe:			
	Druckstück (wahlweise):	Drehbar, gerillt, flach		
	Zylinderfuß,	Erhöht die Stabilität		
	Zubehör für Zylinder (RC-Serie):	Erweiterte Funktionalität		
	Gewähltes Zylindermodell:		 	
	Einschliesslich Kupplungsmodell:			
	•			
Auswählen einer Pumpe	Verfügbare Energiequelle: ☐ Handbetätigt	□ Batterie □ Elektrisch □ Preßluft □	Benzin	
Die am häufigsten	Handpumpe	Nicht für Schnellfrequenzwerkzeuge		
jewählten Pumpen	Einfach- oder doppeltwirkend	4-Wegeventil für DW-Anwendungen		
ind Handpumpen,		Siehe Geschw.diagr. auf Seite 405		
lektropumpen und	Gewählte Handpumpe:	3	•	
ufthydraulische				
Pumpen.	Elektro- oder Preßluftpumpe			
Benzinbetriebene	Soll die Pumpe tragbar sein?			
umpen können	Betriebsart:	Intermittierend oder Schnellfrequent		
edoch auf dieselbe	Erforderliches nutzbares Ölvolumen:	Intermittierend: 1,2 x Ölvolumen		
Veise ausgewählt	Schnellfrequent:	2 x Ölvolumen		
verden.	Verfügbare Spannung:			
	Hubgeschwindigkeit (wichtig/nicht wichtig):	Siehe Geschw.diagr. auf Seite 405		
	Steuerungsart:	Handbetätigt/ferngesteuert		_
	Betätigungs-/Funktionsart:	Ausfahren/Halt/Einfahren		
	Zubehör:	Schutzrahmen, Rücklauffilter,		
	Gewählte Pumpe:		.	
	Einschließlich Kupplungen:	Ölanschluß		
System- componenten	Erforderliche Anzahl Hydraulikschläuche u	nd Länge:		
Componenten	Gewählte Hydraulikschläuche:		•	
	Verteiler oder T-Stück:		•	
	Zusätzlicher Schlauch je Verteiler (2)		•	
	Manometer (Anzeige kN oder bar) GF-Serie Gl	yzeringefüllt für schnellfrequente Anwendung	•	
	Verschraubungen:		>	
	Druckbegrenzungssicherheitsventil:		•	
	Ventile zum Halten der Last:		•	
	Hydrauliköl		>	
	nyaraanno.			

Grundlagen hydraulischer Systeme

ENERPAC.

Zylinder

Dient der Übertragung hydraulischer Kraft. **Seite 5**

2 Zylinderfuß

Wird zum Heben schwerer Lasten verwendet, wo eine zusätzliche Stabilität des Zylinders erforderlich ist.

Seite 10

3 Pumpe

Wird zum Heben schwerer Lasten verwendet, wo eine zusätzliche Stabilität des Zylinders erforderlich ist.

Seite 73-75

4 Hydraulikschlauch

Für den Transport der Hydrauliköl.

Seite 128-129

5 Kupplungsstecker

Dient der schnellen Verbindung des Schlauchs mit den Systemkomponenten.

Seite 130-131

6 Kupplungsmuffe

Dient der schnellen Verbindung des Schlauchs mit den Systemkomponenten.

Seite 130-131

7 Manometer

Dient der Überwachung des Drucks im Hydrauliksystem.

Seite 136-142

Manometer-Zwischenstück

Für den schnellen und problemlosen Einbau des manometers.

Seite 142-143

g Drehverschraubung

Ermöglicht ein exaktes Ausrichten von Ventilen und/oder Manometern. Wird verwendet, wenn mit einander verbundene Einheiten nicht gedreht werden können.

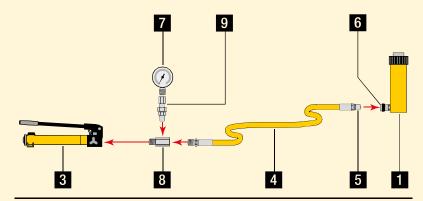
Seite 143

10 Selbstdämpfendes Ventil V10

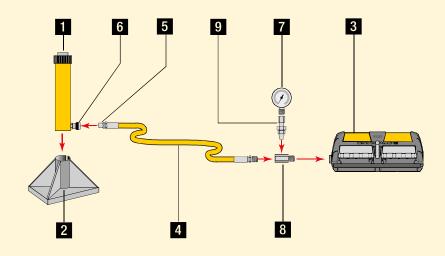
Zu verwenden zum Schutz des Manometers vor Beschädigung durch Druckstöße bei plötzlicher Lastfreigabe im Hydrauliksystem. Ermöglicht die genaue Positionierung des Manometers vor dem Festschrauben.

Seite 144-145

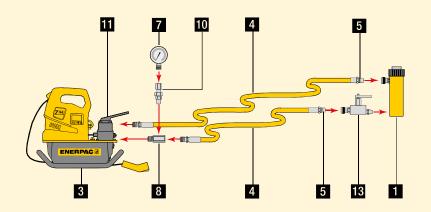
11 4-Wege-Steuerventil


Regelt die Bewegungsrichtung in doppeltwirkenden Systemen.

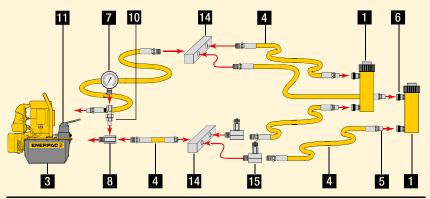
Seite 122-123


Einfachwirkende Anwendung zum Schieben, wie z.B. bei einer Presse.

Die Handpumpe gewährleistet ein kontrolliertes Ausfahren des Zylinders. Sie kann jedoch relativ viele Pumpenhübe bei längeren Hubanwendungen erfordern, wenn die Druckkraft des Zylinders 25t oder mehr beträgt.


Beispiele für Sets (Pumpe, Zylinder, Hydraulikschlauch) siehe Seiten 62-65.

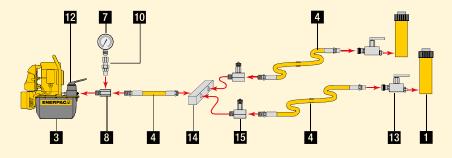
Einfachwirkende Zylinder mit langem Hub zum Heben von Lasten.


Einrichtung eines doppeltwirkenden Zylinders zum Heben von Lasten, wobei ein langsames, kontrolliertes Ablassen der Last gewährleistet sein muß.

Grundlagen hydraulischer Systeme

Aufbau mit doppeltwirkenden Zylindern zum Schieben oder Ziehen.

Vorrichtung zum Heben einer Last an zwei Stellen mittels einfachwirkender Zylinder.

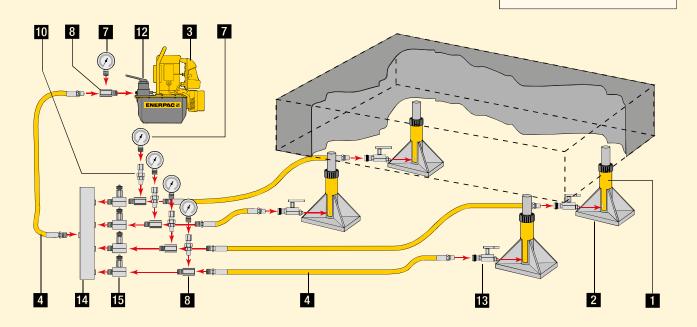

einfachwirkenden Systemen. Seite 122-123 Absperr- und Sicherheitsventil V66 Kontrolliert bei Hebeanwendunge das Ablassen von Lasten. Seite 144-145

12 3-Wege-Steuerventil

Regelt die Bewegungsrichtung in

Verteiler Erlauben den Anschluß mehrerer Zylinder an ein Aggregat. Seite 132-135

Absperr- oder Nadelventil V82
Reguliert den Durchfluß der Hydraulikflüssigkeit zu oder von den Zylindern.
Seite 144-145



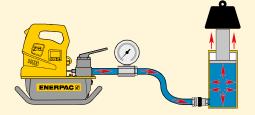
Vorrichtung zum Heben einer Last an vier Stellen mittels **einfachwirkender Zylinder** und Regelventile.

www.enerpac.com

Besuchen Sie unsere Website; dort erfahren Sie mehr über die Hydraulik und die Systemauslegungen.

Grundlagen der Hydraulik

ENERPAC.


Durchfluß

Eine Hydraulikpumpe erzeugt Fördervolumen (Durchfluß).

Druck

Druck entsteht, wenn Widerstand auf den Durchfluß ausgeübt wird.

Pascalsches Gesetz

Regelt die Bewegungsrichtung (Abbildung 1). Das heißt, daß bei der Verwendung mehrerer Zylinder jeder einzelne Zylinder entsprechend der Kraft, die zum Heben der Last an der betreffenden Stelle erforderlich ist, ausfahren wird (Abbildung 2).

Die die leichteste Last hebenden Zylinder fahren zuerst aus, und die die schwerste Last hebenden Zylinder fahren zuletzt aus (Last A), vorausgesetzt, die Zylinder haben die gleiche Druckkraft.

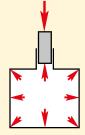
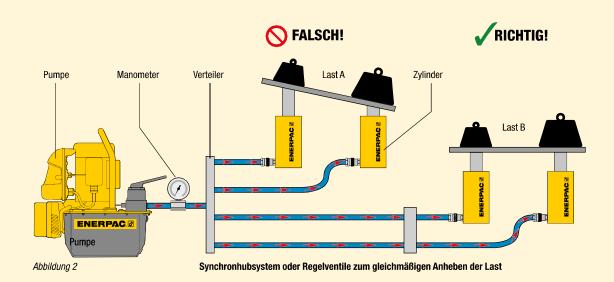
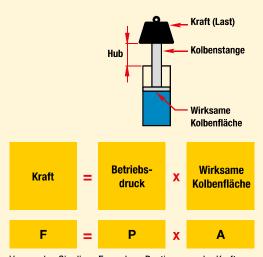



Abbildung 1

Zum gleichmäßigen Ausfahren aller Zylinder auch bei unterschiedlichen Lasten sind im Hydrauliksystem entweder Steuerventile (siehe Katalogteil Ventile) oder spezielle Komponenten des Synchronhubsystems (siehe Katalogteil Schwerlast-Hebezeuge) einzubauen (Last B).



Grundlagen der Hydraulik

Kraft

Die Kraft, die ein hydraulischer Zylinder erzeugen kann, ist gleich dem hydraulischen Druck multipliziert mit der "wirksamen Kolbenfläche" des Zylinders (siehe die Auswahltabellen für Zylinder).

Verwenden Sie diese Formel zur Bestimmung der Kraft, des Betriebsdrucks oder der wirksamen Kolbenfläche des Zylinders, wenn zwei der Variablen bekannt sind.

1. Beispiel

Welche Druckkraft erzeugt ein RC106 Zylinder mit einer wirksamen Kolbenfläche von 14,5 cm² bei 700 bar? Kraft = 7000 N/cm² x 14,5 cm² = 101500 N = 101,5 kN

2. Beispiel

Welchen Druck erfordert ein RC106 Zylinder zum Heben einer Last von 7000 kg?

Druck = $7000 \times 9.8 \text{ N} \div 14.5 \text{ cm}^2 = 4731.0 \text{ N/cm}^2 = 473 \text{ bar}$

3. Beispiel

Zur Erzeugung einer Kraft von 190.000 N wird ein RC256 Zylinder benötigt. Wie hoch ist der erforderliche Druck?

Druck = $190.000 \text{ N} \div 33,2 \text{ cm}^2 = 5722,9 \text{ N/cm}^2 = 572 \text{ bar}$

4. Beispiel

Zur Erzeugung einer Kraft von 800.000 N werden vier RC308 Zylinder benötigt. Wie hoch ist der erforderliche Druck?

Druck = $800.000 \text{ N} \div (4 \text{ x } 42,1 \text{ cm}^2) = 4750,6 \text{ N/cm}^2 = 475 \text{ bar}$ Bitte beachten: Da vier Zylinder zusammen verwendet werden, ist die wirksame Kolbenfläche eines Zylinders mit der Anzahl der Zylinder zu multiplizieren.

5. Beispiel

Ein HCL2506 Zylinder soll mit einem Antriebsaggregat mit einer Leistung von 500 bar verwendet werden. Wie hoch ist die Kraft, die theoretisch von diesem Zylinder erzeugt werden kann?

Kraft = $5000 \text{ N/cm}^2 \text{ x } 363,1 \text{ cm}^2 = 1.815.500 \text{ N} = 1815 \text{ kN}.$

Ölvolumen des Zylinders

Die für einen Zylinder benötigte Ölmenge ist gleich der wirksamen Kolbenfläche des Zylinders multipliziert mit dem Zylinderhub*.

1. Beispiel

Welches Ölvolumen erfordert ein RC158 Zylinder mit einer wirksamen Kolbenfläche von 20,3 cm² und einem Kolbenhub von 200 mm?

Ölvolumen = $20.3 \text{ cm}^2 \text{ x } 20 \text{ cm} = 406 \text{ cm}^3$

2. Beispiel

Wieviel Öl benötigt ein RC5013 Zylinder mit einer wirksamen Kolbenfläche von 71,2 cm² und einem Kolbenhub von 320 cm?

Ölvolumen = $71,2 \text{ cm}^2 \text{ x } 32 \text{ cm} = 2278 \text{ cm}^3$

3. Beispiel

Welches Ölvolumen erfordert ein RC10010 Zylinder mit einer wirksamen Kolbenfläche van 133,3 cm² und einem Hub von 260 mm?

Ölvolumen = $133,3 \text{ cm}^2 \times 26 \text{ cm} = 3466 \text{ cm}^3$

4. Beispiel

Es werden 4 RC308 Zylinder mit verwendet je 42,1 cm² wirksamer Kolbenfläche und 209 mmm Hub. Wieviel Öl wird benötigt?

Ölvolumen = $42,1 \text{ cm}^2 \text{ x } 20,9 \text{ cm} = 880 \text{ cm} 3 \text{ x } 4 = 3520 \text{ cm}^3$

* Hinweis: Die aufgeführten Beispiele sind theoretisch. Die Kompressibilität des Öls bei hohem Druck wurde dabei nicht berücksichtigt.

Umrechnungstabellen

ENERPAC. 🗗

Schriftzeichenerklärung

Die in den Auswahltabellen für Zylinder aufgeführten Abmessungen sind in den entsprechenden Zeichnungen durch nebenstehende Buchstaben gekennzeichnet von A für Bauhöhe, eingefahren, bis Z1 für Tiefe der Bodenbefestigungsbohrung.

= Bauhöhe, eingefahren

= Bauhöhe, ausgefahren В

С = Gehäuselänge

Gehäuse-Außendurchmesser

Zylinderbreite

Gehäuse-Innendurchmesser

Kolbenstangendurchmesser

Ölanschlußgewinde

Zylinderboden bis Ölanschlußgewinde

Gehäuseoberkante bis Ölanschlußgewinde

= Druckstück-Außendurchmesser

Kolbenüberstand bei eingefahrenem Zylinder

Kolbenstangenmittelpunkt bis Zylinder-Außendurchmesser

Befestigungsbohrungen bis

Kolbenstangenmittelpunkt

N = Länge des kleineren Zylinderteils

Kolbenstangenbohrung oder Druckstückgewinde

Kolbenstangengewindetiefe

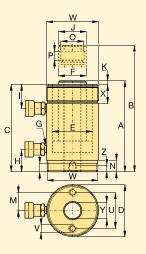
Kolbenstangengewinde

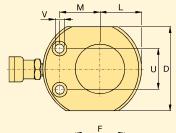
Lochkreisdurchmesser der Befestigungsbohrungen

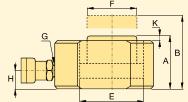
٧ Bodenbefestigungsgewinde

Befestigungsgewindelänge W =

Befestigungsgewinde


Länge Gehäuseabsatz


Mittelloch-Durchmesser


Z = Gehäuseinnengewinde

Z1 = Tiefe der Gehäuseinnen- und

Bodenbefestigungsbohrung

Zoll nach mm

Zoll

Umrechnung der Maßeinheiten

Sämtliche in diesem Katalog enthaltenen Maße und Leistungen wurden in einheitlichen Werten angegeben. Zur Umrechnung verwenden Sie bitte die nebenstehende Tabelle.

Alle Angaben zu Zylinderkräften in diesem Katalog sind in metrischen Tonnen und dienen nur der Zylinder-Einteilung.

Für Berechnungen verwenden Sie bitte nur die Angaben in kN.

Umrechnungsprogramm

Besuchen Sie unsere Website unter enerpac.com; dort können Sie sich das kostenlos herunterladen.

Druck:	
1 psi	= 0,069 bar
1 bar	= 14,50 psi
	$= 9.8 \text{ N/cm}^2$

= 100.000 Pa

1 kPa = 0,145 psi

Volumen:

1 in³ $= 16,387 \text{ cm}^3$ 1 cm^3 $= 0,061 \text{ in}^3$ 1 I (Liter) $= 61,02 in^3$ = 0.264 gal $= 1000 \text{ cm}^3$ $= 3,785 \text{ cm}^3$ 1 gal (US) = 3,785 I

 $= 231 in^3$

= 0.4536 kg

Gewicht: 1 pound (lb)

1 kg = 2.205 lbs= 9.806 N1 metrische t = 2205 lbs= 1000 kg= 2000 lbs1 t (short) = 907,18 kg

Drehmoment:

= 0,738 Ft.lbs1 Nm = 0,102 kgf.m 1 Ft.lbs = 1,356 Nm= 0,138 kgf.m

Temperatur:

Zur Umwandlung von °C in °F: $T^{\circ F} = (T_{\circ C} \times 1.8) + 32$ Zur Umwandlung von °F in °C: $T_{\circ}C = (T_{\circ_F} - 32) \div 1.8$

Andere Maßeinheiten:

1 in (ZoII) = 25,4 mm= 0,039 inch (ZoII) 1 mm 1 in² $= 6,452 \text{ cm}^2$ 1 cm² $= 0,155 \text{ in}^2$ 1 PS = 0.746 kW1 kW = 1.359 PS1 Nm = 0.102 kg/m

1 Nm = 0.73756 Ft.lbs 1 Ft.lbs = 1,355818 Nm1 kN = 225 lbs

1/16 .06 1,59 1/8 .13 3,18 3/16 .19 4,76 1/4 .25 6,35 5/16 .31 7,94 3/8 .38 9,53 .44 7/16 11,11 1/2 .50 12,70 9/16 .56 14,29 .63 15,88 5/8 11/16 .69 17,46 3/4 .75 19,05 13/16 .81 20,64 7/8 .88 22,23 15/16 .94 23,81 1.00 25,40

Dezimal

mm

Geschwindigkeitstabelle für Zylinder

Diese Tabelle hilft Ihnen bei der Berechnung der Zeit zum Heben einer Last mit einer Enerpac 700 bar Pumpe. Diese Tabelle kann auch verwendet werden, um die Pumpenausführung und das Modell zu wählen, das am besten für Ihre Anwendung geeignet ist, wenn die erforderliche Kolbengeschwindigkeit bekannt ist.

Ermitteln der Kolbengeschwindigkeit

Ein RC256 (Druckkraft 25 t) wird von einer Pumpe der ZE3 Serie zweistufig angetrieben. Der Zylinderkolben hebt den Last mit 2,8 mm pro Sekunde. Beim Ausfahren in Richtung der Last fährt der Zylinderkolben mit 30,9 mm pro Sekunde.

n	te		i.		50	50 tim 75 tox 100		ba.			
2	l,	L		Louis	-				*	_	new hou
10.6	Ħ	P	19	13	40	1.6	112	TA.	23	93	10 Cordina Para
87	G	п	18.8	12	11.7	u	8.7	3.8	63	87	252 Carotinos Puro
IL	Εi	Е	JI.	1.3	17.	87	34.	AA.	43.	BA.	PS Summing
362	Εž	Е	163	13	AA.	12	AR.	AA.	45.	.08	E-Pales
92.7	N	i	453	432	78.9	3.3	18,7	3.8	16.6	3.8	204-Serios
3.0	В	П	13	2.2	LLE	u	18.	IA.	907	6.7	233 one stops
20.0	1	×	•	4.5	-	12	-	-	24	-	IE3 has stage
4.8	I A	ī	24.	12	2.8	1.8	18	1.3	M	1.0	IES one stage

Ermitteln der optimalen Pumpe

Ihr 25 t-Zylinder soll eine Last mit einer Geschwindigkeit von 3,0 mm/Sek. bewegen. Gehen Sie in der Tabelle einfach von oben nach unten zum dort aufgeführten Wert 2,8 mm/Sek. Gehen Sie dann nach rechts. Die optimale Pumpe für Ihre Anwendung ist eine Pumpe der ZE3-Serie.

201	toe .		-	50	Sm.	-75	ton :	100	ba.	
4	L	4	Louis	-				*	_	new hou
66	7	19	13	40	14	SA2	SA.	23	93	10 Cordion Party
N.	20	78.8	12	117	u	RJ.	33	63	87	202 Constitute Part
IL.	10.	31.	1.3	37.	87	34	AA.	43.	BA.	PS Summing
(a)	20	14,5	7.3	8.6	1.2	3.8	13.	43.	.08	6-Pales
2.2	W	46.5	62	78.9	2.2	18,7	3.8	16.6	1,8	294-Serios
12		33	2.2	LLE	u	18.	IA.	907	6.7	ZE3 one stops
me	28	-	6.5	-	12	-	-	10	➣	SES have obligat
4.8	41	24	12	28	1.5	18	1.3	111	18	IDI one stage

Millimeter RC-Serien Zylinderkolbenstangenbewegung pro Handpumpenhub

Zyl. Druckkraft ▶	5	t	10) t	15	5 t	25	5 t	30) t	50) t	75	5 t	10	0 t		
▼ Antrieb	ohne Last	mit Last	Pumpen Ausführung	Seite:														
Handbetätigt	1,4	1,4	0,6	0,6	0,4	0,4	0,3	0,3	0,2	0,2	0,1	0,1	0,1	0,1	0,1	0,1	P141	76
	3,9	3,9	1,7	1,7	1,2	1,2	0,7	0,7	0,6	0,6	0,3	0,3	0,2	0,2	0,2	0,2	P391	76
	17,6	3,9	7,8	1,7	5,5	1,2	3,4	0,7	2,6	0,6	1,6	0,3	1,0	0,2	0,8	0,2	P392	76
	25,3	3,8	11,2	1,7	7,9	1,2	4,9	0,7	3,7	0,6	2,3	0,3	1,5	0,2	1,1	0,2	P77/80/801/84	78
	61,4	3,9	27,1	1,7	19,3	1,2	11,8	0,7	9,0	0,6	5,5	0,3	3,5	0,2	2,8	0,2	P802/842	78
	197	7,4	87,1	3,3	61,8	2,3	37,9	1,4	29,0	1,1	17,7	0,7	11,4	0,4	8,8	0,3	P462/464	78

RC-Serien Kolbengeschwindigkeit in mm/Sek.

Zyl. Druckkraft 🕨	5	t	10) t	18	5 t	25	ī t	30) t	50) t	75	5 t	10	0 t		
▼ Antrieb	ohne Last	mit Last	Pumpen Ausführung	Seite:														
Elektrisch	51,3	6,4	23,0	2,9	16,4	2,1	10,0	1,3	7,9	1,0	4,7	0,6	3,2	0,4	2,5	0,3	XC Batterie betrieben	86
(bei 50 Hz)	128,2	13,3	57,5	6,0	41,1	4,3	25,1	2,6	19,8	1,2	11,7	1,2	8,1	0,8	6,3	0,7	ZC3 Batterie betrieben	88
	86	8,3	38	3,7	27	2,6	17	1,6	13	1,3	7,7	0,7	5,4	0,5	4,1	0,4	PU Kompakt-Serie	90
	92,3	12,8	41,4	5,7	29,6	4,1	18,1	2,5	14,3	2,0	8,4	1,2	5,8	0,8	4,5	0,6	E-Pulse	94
	295	25,6	132	11,5	94,4	8,2	57,7	5,0	45,5	4,0	26,9	2,3	18,7	1,6	14,4	1,3	ZU4-Serie	97-98
	15,1	14,1	6,8	6,3	4,8	4,5	3,0	2,8	2,3	2,2	1,4	1,3	1,0	0,9	0,7	0,7	ZE3-Serie einstufig	97, 104
	158	14,1	70,7	6,3	50,5	4,5	30,9	2,8	24,3	2,2	14,4	1,3	10,0	0,9	7,7	0,7	ZE3-Serie zweistufig	97, 104
	22,3	21,0	10,0	9,4	7,1	6,7	4,4	4,1	3,4	3,2	2,0	1,9	1,4	1,3	1,1	1,0	ZE4 Serie einstufig	97, 104
	228	21,0	102	9,4	72,9	6,7	44,6	4,1	35,2	3,2	20,8	1,9	14,4	1,3	11,1	1,0	ZE4-Serie zweistufig	97, 104
	44,9	42,1	20,1	18,9	14,4	13,5	8,8	8,2	6,9	6,5	4,1	3,8	2,8	2,7	2,2	2,1	ZE5 Serie einstufig	97, 104
	298	42,1	133	18,9	95,3	13,5	58,3	8,2	46,0	6,5	27,2	3,8	18,9	2,7	14,5	2,1	ZE5-Serie zweistufig	97, 104
	76,9	70,0	34,5	31,4	24,6	22,4	15,1	13,7	11,9	10,8	7,0	6,4	4,9	4,4	3,8	3,4	ZE6 Serie einstufig	97, 104
	315	70,0	141	31,4	101	22,4	61,7	13,7	48,7	10,8	28,8	6,4	20,0	4,4	15,4	3,4	ZE6-Serie zweistufig	97, 104
	53,8	53,8	24,1	24,1	17,2	17,2	10,5	10,5	8,3	8,3	4,9	4,9	3,4	3,4	2,6	2,6	SFP421 (11 kW)	336
Luft	51,3	6,4	23,0	2,9	16,4	2,1	10,0	1,3	7,9	1,0	4,7	0,6	3,2	0,4	2,5	0,3	XA-Serie	114
(bei 6,9 bar	25,9	4,2	11,6	1,9	8,2	1,3	5,0	0,8	4,0	0,6	2,3	0,4	1,6	0,3	1,3	0,2	Turbo II Luft	112
Luftdruck)	17	3,4	7,6	1,5	5,4	1,1	3,3	0,7	2,6	0,5	1,5	0,3	1,1	0,2	0,8	0,2	PA-Serie	110
	277	3,8	123	1,7	88	1,2	53	0,7	42	0,6	25	0,3	17	0,2	13,0	0,2	PAM-Serie	111
	357	33,6	160	15,1	114	10,8	69,9	6,6	55,1	5,2	32,6	3,1	22,6	2,1	17,4	1,6	ZA-Serie	97, 116
Benzin	295	41	132	18,4	94,4	13,1	57,7	8,0	45,5	6,3	26,9	3,7	18,7	2,6	14,4	2,0	ZG5-Serie 4,1 kW	97, 118
	166	41	74,7	18,4	53,4	13,1	32,6	8,0	25,7	6,3	15,2	3,7	10,6	2,6	8,1	2,0	ZG5-Serie 4,8 kW	97, 118
	376	85	169	37,9	121	27,1	73,8	16,6	58,2	13,1	34,4	7,7	23,9	5,4	18,4	4,1	ZG6-Serie 9,7 kW	97, 118

"Ohne Last" gibt die Kolbenstangengeschwindigkeit beim Ausfahren in Richtung der Last an (1. Stufe). "Mit Last" gibt die Kolbenstangengeschwindigkeit an beim Heben der Last bei einem Systemdruck von 700 bar (2. Stufe).

Beispiel: Mit welcher Geschwindigkeit wird sich der RC256 (25 t) Zylinder bewegen, angetrieben von einer Pumpe der ZE3-Serie? RC256 Kolbenfläche = 33,2 cm² ZE3-Serie Fördervolumen (ohne last) = 6150 cm³/min

Kolbengeschwindigkeit
(mm/Sek.)

Fördervolumen Pumpe (cm³/min) x 10

Kolbenfläche (cm²) x 60

Geschwindigkeit V =
$$\frac{6150 \text{ cm}^3/\text{min x } 10}{33,2 \text{ x } 60}$$
 = 30,9 mm/Sek.

Informationen zu Hydraulikventilen

ENERPAC. 🗗

Wegeventile: Ein 3-Wegeventil hat drei Anschlüsse: Druck (P), Tank (T) und Zylinder (A).

Ein 4-Wegeventil hat vier Anschlüsse: Druck (P), Tank (T), Ausfahren (A) und Einfahren (B).

Einfachwirkende Zylinder erfordern ein 3-Wegeventil. und können, unter gewissen Umständen, auch mit einem 4-Wegeventil betätigt werden.

Doppeltwirkende Zylinder erfordern ein 4-Wegeventil, die den Durchfluß zu jeder Zylinderöffnung regeln.

Schaltstellen: Die Anzahl der Steuerungspunkte eines Ventils. Mit einem Ventil mit 2 Schaltstellungen kann lediglich die Ausfahr- und Einfahrbewegung des Zylinders geregelt werden. Um den Zylinder auch in der Stellung HALT regeln zu können, muß das Ventil eine 3. Schaltstellung haben.

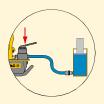
Die Mittelstellung eines Ventils ist die Stellung, in der keine Bewegung der hydraulischen Komponente (ein hydraulisches Werkzeug oder Zylinder) erforderlich ist.

Die Tandem-Mittelstellung ist die am häufigsten vorkommende Ventilausführung. Sie sorgt für nur wenig oder gar keine Zylinderbewegung sowie für Entlastung der Pumpe und gewährleistet, daß nur geringe Wärme entwickelt wird.

Die geschlossene Mittelstellung

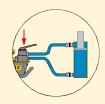
wird vorwiegend zur unabhängigen Steuerung von Anwendungen mit mehreren Zylindern verwendet und sorgt wiederum für wenig oder gar keine Zylinderbewegung sowie für das Absperren der Pumpe, indem sie vom Kreislauf isoliert wird. Bei der Verwendung dieses Ventiltyps kann zur Verhinderung von Wärmeentwicklung eine Vorrichtung zur Entlastung der Pumpe erforderlich sein.

Es gibt viele andere Ventiltypen, wie z.B. Ventile mit offener und schwimmender Mittelstellung. Diese Ventile werden meist in komplizierten Hydraulikkreisen eingesetzt und erfordern andere, spezielle Überlegungen.



Wegeventile

3-Wegeventile

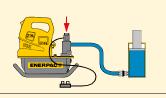

werden mit einfachwirkenden Zylindern verwendet.

Pumpenmontage

4-Wegeventile

werden mit doppeltwirkenden Zylindern verwendet.

Rohrleitungsmontage


Ventile sind entweder für Pumpen- oder

für Rohrleitungsmontage ausgelegt.

Elektromagnetisch

Ausfahren/ Halten/ Einfahren

Ventile sind

elektromagnetische Ventile.

entweder

Einfachwirkender Zylinder

gesteuert von einem 3/3-Wegenventil

Ausfahren

Öl fließt von der Pumpenöffnung P zur Zylinderöffnung A: Die Zylinderkolben-

stange wird ausgefahren.

Doppeltwirkender Zylinder

gesteuert von einem 4/3-Wegenventil

Ausfahren

Öl fließt von der Pumpenöffnung P zur Zylinderöffnung A sowie von der

Zylinderöffnung B zum Tank T.

Halt

Öl fließt von der Pumpenöffnung P zum Tank T. Zylinderöffnung A ist abgesperrt:

Kolbenstange bleibt unverändert in ihrer Stellung.

Halt

Öl fließt von Pumpenöffnung P zum Tank T. Zylinderöffnungen A und B

sind geschlossen: Die Kolbenstange bleibt unverändert in ihrer Stellung.

Einfahren

Öl fließt von der Pumpe und der Zylinderöffnung zum Tank T:

Die Zylinderkolbenstange wird eingefahren.

Einfahren

Öl fließt von der Pumpen-öffnung P zur Zylinderöffnung B sowie von

der Zylinder-öffnung A zum Tank T: Die Zylinderkolbenstange wird eingefahren.

Sechskant-Bolzen & Mutterngrößen

METRISCH

	ZÖLLIG	
D	S	
Gewinde- größe	Sechskant- größe *	Innensechs- kantgröße
D	S	J
(ZoII)	(ZoII)	(ZoII)
5/8"	1 ¹ /16"	1/2"
3/4"	1 ¹ /4"	5 _{/8} "
7/8"	1 ⁷ /16"	3/4"
1"	1 ⁵ /8"	3/4"
1 ½"	1 ¹³ /16"	7/8"
1 ¹ / ₄ "	2"	7/8"
13/8"	2 ³ /16"	1"
11/2"	23/8"	1"
1 5/8"	29/16"	-
13/4"	23/4"	1 1/4"
1 ⁷ /8"	215/16"	1 ³ /8"
2"	31/8"	1 5/8"
21/4"	31/2"	1 3/4"
21/2"	37/8"	1 ⁷ /8"
23/4"	41/4"	2"
3"	45/8"	21/4"

^{5&}quot; * Sechskantmuttern mit großer Schlüsselweite.

21/4"

31/4"

Bestimmen Sie das maximale Drehmoment anhand der Bolzen-/Mutterngröße und Festigkeit. Folgen Sie dazu

immer den Herstellerangaben oder den technischen Instruktionen, wenn Sie Schraubverbindungen herstellen wollen.

WICHTIG

Die Sechskantgrößen in der nachfolgenden Tabelle dienen lediglich als Anhaltswert. Vor der

Auswahl des Werkzeugs sollten Sie unbedingt die tatsächlichen Abmessungen prüfen.

Stecknüsse

Verwenden Sie ausschließlich Heavy Duty Schlagschraubernüsse für Verschraubungsgeräte mit Motorantrieb, und zwar

gemäß ISO 2725 und ISO1174; DIN 3129 und DIN 3121 oder ASME-B107.2/1995.

Drehmomentverschraubung

ENERPAC.

Verschraubungsmethoden

Grundsätzlich gibt es zwei Verschraubungsmethoden: "Kontrolliert" und "unkontrolliert".

Unkontrollierte Verschraubung

Die Ergebnisse der eingesetzten Geräte bzw. Verfahren können nicht kontrolliert werden. Auf die Bolzen-/Mutter-Anordnung wird mit einem Hammer und einem Schraubenschlüssel oder einem anderen Schlagwerkzeug eine bestimmte Vorspannung angewandt.

Kontrollierte Verschraubung

Es kommen kalibrierte und kontrollierbare Geräte sowie geschultes Personal zum Einsatz. Außerdem werden vorgeschriebene Verfahren befolgt.

Die Vorteile kontrollierter Verschraubung

Bekannte, kontrollierbare und genaue Bolzenbelastungen

Einsatz von Werkzeugen mit kontrollierbaren Ergebnissen und Anwendung von Berechnungen zur Bestimmung der erforderlichen Werkzeugeinstellungen.

Einheitliche Bolzenbelastung

Besonders wichtig bei abgedichteten Verbindungen, da die Wirksamkeit einer Dichtung durch einen gleichmäßigen und gleichbleibenden Druck bedingt wird.

Sicherer Betrieb durch vorgeschriebene Verfahren

Bei manueller, unkontrollierter Verschraubung auftretende, gefährliche Handlungen werden ausgeschlossen. Setzt die Schulung des Bedienungspersonals und die Einhaltung vorgeschriebener Verfahren voraus.

Reduzierter Arbeitsaufwand ermöglicht Produktivitätssteigerung

Geringerer Verschraubungsaufwand und geringere Ermüdung des Bedienungspersonals durch kontrollierten Werkzeugeinsatz statt körperlicher Anstrengungen.

Zuverlässige und reproduzierbare Ergebnisse

Durch den Einsatz von kalibrierten, getesteten Geräten und geschultem Bedienungspersonal sowie die Befolgung von vorgeschriebenen Verfahren werden konstante Ergebnisse erzielt.

Sofort das richtige Resultat

Die mit einer fehlerhaften Verschraubung verbundenen Risiken können reduziert werden, wenn die Verbindung gleich beim ersten Mal richtig montiert und verschraubt wird.

Lösungen für die Verschraubungstechnik

Für nähere Informationen über Drehmomentverschraubung

oder andere kontrollierte Verschraubungsmethoden besuchen Sie unsere Website oder bestellen Sie unseren Katalog Lösungen für die Verschraubungstechnik.

On-line Verschraubungsberechnung

Eine umfassende, kostenlose Online-Softwarelösung für Verschraubungen. Integrierte Datenbank mit Angaben zu:

- ASME B16.5, ASME B16.47, API 6A und API 17D Flanschverbindungen
- allgemeinem Dichtungsmaterial und -ausführungen
- · unserem umfassenden Bolzenmaterialsortiment
- · unserem umfassenden Schmiermittelsortiment
- Geräten von Enerpac für kontrollierte Verschraubung einschließlich: Drehmomentvervielfältiger, hydraulische Drehmomentschlüssel und Bolzenspannwerkzeuge.

Auch Ihre eigenen Verschraubungsdaten können erfasst werden.

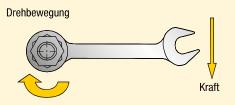
Die Software ermöglicht die Werkzeugauswahl, Schraubenlastberechnungen und Werkzeugdruckeinstellungen. Außerdem steht ein kombinierter Bericht mit Anwendungsdatenblatt und Verschraubungsprüfbericht zur Verfügung.

Was ist Drehmoment?

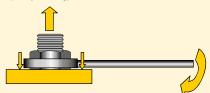
Das Drehmoment ist die physikalische Größe die besagt, wie viel Kraft erforderlich ist, um ein Objekt zum Drehen zu bringen.

Was ist Drehmomentverschraubung?

Die Anwendung einer Vorspannung auf eine Schraubbefestigung durch Drehen der Befestigungsmutter.


Drehmomentverschraubung und Vorspannung

Wie viel Vorspannung durch die Verschraubung entsteht, wird hauptsächlich durch den Reibungswiderstand bedingt.

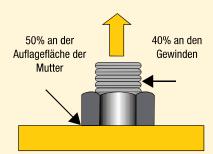

Grundsätzlich setzt sich das Drehmoment aus drei Komponenten zusammen:

- Dem Drehmoment zur Verlängerung des Bolzens
- Dem Drehmoment zur Überwindung des Reibungswiderstands des Bolzen- und Muttergewindes
- Dem Drehmoment zur Überwindung des Reibungswiderstands an der Auflagefläche der Mutter.

Drehmomentverschraubung

Verlängerung der Befestigung (Vorspannung)

Drehmomentverschraubung

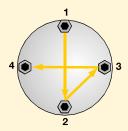

Vorspannung (Restspannung) = Angewandtes Drehmoment abzüglich Reibungsverluste

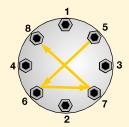
Schmierung reduziert die Reibung

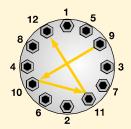
Schmierung reduziert die Reibung während der Verschraubung, verringert das Risiko einer fehlerhaften Bolzenmontage und erhöht die Lebensdauer des Bolzens. Unterschiedliche Reibungskoeffizienten beeinträchtigen die bei einem bestimmten Drehmoment erreichte Vorspannung. Eine höhere Reibung bedeutet, dass mit einem betreffenden Drehmoment weniger Vorspannung erreicht werden kann. Um den genauen, erforderlichen Drehmomentwert bestimmen zu können, muss der Reibungskoeffizient des Schmiermittelherstellers bekannt sein. Es sollte ein Schmiermittel an der Auflagefläche der Mutter und am Bolzengewinde angebracht werden.

Reibungsverluste

10% wird in Vorspannung umgewandelt




Reibungsverluste (trockener Stahlbolzen)


Verschraubungsverfahren

Beim Verschrauben wird meistens nur ein Bolzen gleichzeitig festgezogen. Dies kann zu Punktbelastung und Streuung der Belastung führen. Um dies zu vermeiden, sollte die Drehmomentverschraubung nach der folgenden Methode erfolgen:

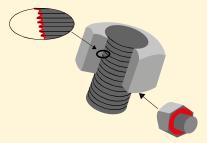
Ablauf der Drehmomentverschraubung

Schritt 1 Mutte

Mutter so weit auf den Bolzen drehen, dass etwa 2 - 3 Gewindegänge aus der Mutter herausstehen.

Schritt 2

Alle Bolzen mit einem Drittel des letztendlich erforderlichen Drehmoments nach dem oben stehenden Muster festziehen.


Schritt 3

Das Drehmoment nach dem oben stehenden Muster auf zwei Drittel des Gesamtdrehmoments erhöhen. Schritt 4

Das Drehmoment nach dem oben stehenden Muster auf das vollständige Drehmoment erhöhen.

Schritt 5

Schließlich alle Bolzen, angefangen beim 1. Bolzen, im Uhrzeigersinn noch einmal mit dem vollständigen Drehmoment anziehen.

Bei der Drehmomentverschraubung immer alle Reibungspunkte schmieren.

Auswahl des richtigen Drehmomentschlüssels

Gehen Sie bei der Wahl Ihres Enerpac-Drehmomentschlüssels von der

folgenden Faustregel aus:

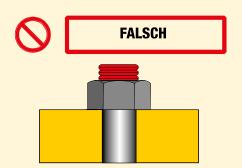
- Zum Lösen einer Mutter oder eines Bolzens ist gewöhnlich ein höheres Drehmoment erforderlich als beim Festziehen.
- Unter normalen Bedingungen beträgt das Lösedrehmoment 2½ Mal das Festziehdrehmoment.
- Beim Lösen oder Festziehen von Muttern oder Bolzen nicht mehr als 75% des höchstzulässigen Werkzeugdrehmoments anwenden.

Einfluss von Umgebungsbedingungen auf Verschraubungen

- Korrosion (Rost) erfordert ein bis zu zweimal höheres Festziehdrehmoment.
- Seewasser- und chemische Korrosion erfordert ein bis zu 2½ Mal höheres Festziehdrehmoment.
- Thermische Oxidation erfordert ein bis zu
 3 Mal höheres Festziehdrehmoment.

Lösedrehmoment

In der Regel liegt das Lösedrehmoment höher als das Festziehdrehmoment. Dies ist

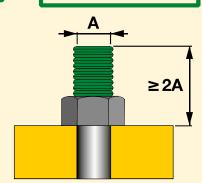

hauptsächlich durch Korrosion und Verformungen der Bolzen- und Muttergewinde bedingt.

Das Lösedrehmoment kann nicht genau berechnet werden, liegt jedoch ggf. bis zu 2½ Mal über dem Festziehdrehmoment.

Bei der Lösung von Verschraubungen sollten immer Kriechöl oder Anti-Seize-Produkte verwendet werden.

ENERPAC.

Vorspannen erfordert längere Bolzen



Was ist Bolzenvorspannen?

Bolzenvorspannen ist die direkte Dehnung des Bolzenschafts in Axialrichtung zur Erzeugung der Vorspannung. Ungenauigkeiten aufgrund von Reibung werden eliminiert. Die relativ hohe Kraft zur Erzeugung des Drehmoments wird durch den einfach zu erzeugenden Hydraulikdruck ersetzt. Durch gleichzeitige Spannung aller Bolzen wird eine in allen Bolzen identische Vorspannung erreicht.

Vorspannen erfordert längere Schrauben und um die Mutter herum muss außerdem eine Auflagefläche vorhanden sein. Vorspannen kann mit abnehmbaren Vorspannzylinder oder mit Hydraulikmuttern bewerkstelligt werden.

Vorspannung (Restspannung) = Aufgebrachte Last abzüglich Vorspannungsverluste

Was ist Vorspannungsverlust?

Vorspannungsverlust ist der Verlust der ursprünglichen Bolzendehnung durch Einwirkung von Gewindeverbiegung, radiale Erweiterung der Mutter oder Einsinken der Mutter in den Auflagebereich des Flansches. Vorspannungsverlust wird in den Berechnungen berücksichtigt und zur verlangten Vorspannung addiert, um die anfänglicheaufgebrachte Last zu bestimmen.

Die Vorspannung hängt von der aufgebrachten Last und dem Lastverlust ab (Lastverlustfaktor).

GLOSSAR DER VERWENDETEN BEGRIFFE

Aufgebrachte Last:

Die während der Spannung auf einen Bolzen wirkende Zuglast einschließlich dem Zuschlag für Lastverlust.

Bolzenspannen:

Ein Verfahren zum kontrollierten Bolzenspannen, das die Vorspannung durch Axialzug direkt am Bolzen erzeugt.

Lösedrehmoment:

Das Drehmoment, das zum Lösen eines festgezogenen Bolzens erforderlich ist. (Gewöhnlich erfordert das Lösen ein höheres Drehmoment als das Festziehen.)

Elastischer Bereich:

Der Bereich auf der Last- / Dehnungskurve eines Bolzens, in dem die Dehnung linear proportional mit der einwirkenden Last ist.

Plastischer Bereich:

Der Bereich auf der Last- / Dehnungskurve eines Bolzens, in dem die Dehnung den Bolzen permanent verformt.

Vorspannungsverlust:

Die Lastverluste, die bei der Übertragung der Last aus einem Spannwerkzeug auf eine Bolzenverbindung auftreten (sie können durch Verformung der Gewindegänge oder Einsinken der Mutter in die Flanschkontaktfläche entstehen und werden rechnerisch als Quotient aus Schraubenlänge und Bolzendurchmesser angegeben).

Laststreuung:

Die Verteilung unterschiedlicher Lasten in einer Reihe von Bolzen nach Aufbringen der Last. Sie entsteht hauptsächlich durch elastische Einwirkung auf die Bolzen und die Flanschteile, da die zuletzt angezogenen Bolzen den Flansch zusätzlich zusammendrücken, werden die zuvor angezogenen Bolzen dadurch leicht entspannt.

Vorspannung:

Die unmittelbar nach der Verschraubung verbleibende Bolzenspannung.

Prüflast:

Die Prüflast wird oft gleichbedeutend mit Reißfestigkeit verwendet, wird aber gewöhnlich bei 0,2% plastischer Verformung gemessen.

Reißpunkt:

Der Punkt auf der Last-/Dehnungskurve, bei dem die Zugbelastung des Bolzens das Reißen des Bolzens bewirkt.

Drehmomentspannen:

Die Anwendung von Vorspannung auf einen Bolzen durch Drehen der Mutter des Bolzens.

Zugfestigkeit:

Die maximale Zugspannung, die in einem Bolzen durch Zugbelastung erzeugt werden kann.

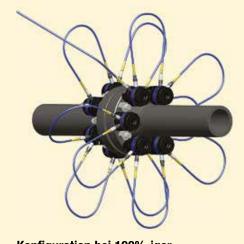
Fließgrenze:

Der Punkt, bei dem die Zugbelastung des Bolzens den Beginn seiner plastischen Verformung bewirkt.

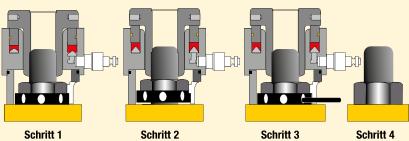
HINWEIS: Bolzen wird hier als generischer Begriff aller Arten von Befestigungsmitteln verwendet, die über ein Gewinde verfügen.

410 www.enerpac.com

Vorspanntechnik


Die hier angegebenen Werte für Druck und Drehmoment sind maximale Sicherheitswerte. Hydraulikausrüstungen mit maximal 80% dieser Werte belasten!

80%

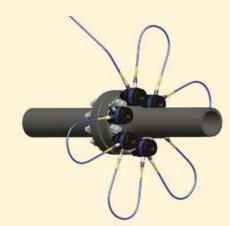


Spannvorgang

Vorspannen ermöglicht gleichzeitiges Spannen mehrerer Bolzen. Die Spannwerkzeuge werden dazu mit Hochdruckschläuchen in Serie geschaltet und an eine Hydraulikpumpe angeschlossen. Dieses Verfahren stellt sicher, dass an jedem Spannwerkzeug die gleiche Zugspannung erzeugt und damit an allen Bolzen identische Vorspannungen aufgebracht werden. Das Verfahren eignet sich daher hervorragend für Druckbehälter, wo es besonders wichtig ist, dass die Flansch- oder Deckeldichtungen überall gleich stark komprimiert werden.

Allgemeines Verfahren

Schritt 1: Der Bolzenspanner wird am überstehenden Schraubenschaft angebracht.


Schritt 2: Der Bolzenspanner wird mit Hydraulikdruck beaufschlagt und dehnt den Bolzen.

Schritt 3: Die Mutter wird angezogen, bis sie die Auflagestelle wieder berührt.

Schritt 4: Der Hydraulikdruck wird abgeschaltet und das Spannwerkzeug wird entfernt.

Da sich der Bolzen wie eine Feder verhält und bei Entfernung des Hydraulikdrucks nun durch die stärker angezogene Mutter gespannt wird, entwickelt der Bolzen die erforderliche Spannkraft, die auf den Flansch wirkt.

Konfiguration bei 100%-iger Spannsequenz Alle Bolzen werden gleichzeitig gespannt.

Weniger als 100% Spannung

Die gleichzeitige und endgültige Spannung aller Bolzen kann nicht bei allen Anwendungen eingesetzt werden. Hier muss dann mindestens mit zwei unterschiedlichen Spanndrücken gearbeitet werden. Bei den zuerst gespannten Bolzen tritt hier wieder "Load Loss" (Spanndruckverlust) ein, wenn die zweite Bolzengruppe gespannt wird.

Die erste Gruppe wird stärker vorgespannt und erreicht ihre Nennvorspannung durch Entspannung bei der Anspannung der zweiten Gruppe.

Konfiguration bei 50%-iger Spannsequenz

Hier wird erst die Hälfte der Bolzen simultan gespannt. Anschließend wird das Werkzeug auf den verbleibenden Bolzen angebracht, die dann gespannt werden.

Lesen Sie die Bedienungsanleitungen aufmerksam durch

Die Bedienungsanleitungen der Produkte enthalten nützliche

Hinweise zur richtigen und sicheren Verwendung der Produkte von Enerpac und deren Einstellung. Die Verschraubungssoftware von Enerpac spielt eine wichtige Rolle bei der Anwendung und Kontrolle der Schraubverbindungen. Die Software wird innerhalb von Enerpac intensiv genutzt und zunehmend weltweit von einer Vielzahl von Kunden oft gemeinsam mit Wartungs-, Konstruktions- und Betriebssystemen verwendet.

- Die vor über 20 Jahren erstmals entwickelte Software wurde basierend auf Benutzerfeedback, technologischen Fortschritten und unserer Rolle in den Normenausschüssen der Industrie kontinuierlich aktualisiert und verbessert, um die umfassendste Softwarelösung für Verschraubungen auf dem Markt zu entwickeln.
- Empfohlene Bolzenbelastungen für Standardverschraubungen werden von unabhängig geprüften Berechnungsmethoden abgeleitet und sind auf Normen rückführbar.

Integrierte Datenbank mit Angaben zu:

- ASME B16.5-, ASME B16.47-, API 6A- und API 17D-Flanschverbindungen
- Gängige Dichtmaterialien und Konfigurationen
- Umfassende Flansch- und Verschraubungsmaterialien
- · Umfassende Reihe Schmiermittel
- Enerpac Verschraubungswerkzeuge für kontrolliertes Festziehen und Lösen umfassen Drehmomentvervielfältiger, hydraulische Drehmomentschlüssel und Bolzenspannwerkzeuge.
- Auch Ihre eigenen Verschraubungsdaten können erfasst werden.

Verschraubungssoftware

Die Software bietet Werkzeugauswahl, Schraubenlastberechnungen und Werkzeugdruckeinstellungen, sowie eine Kombination von Anwendungsspezifikation und Abschlussprotokoll. Diese Software beinhaltet folgende

Auswahlmöglichkeiten für Hydraulikwerkzeuge:

- Drehmomentschlüssel der S-, W-, RSL-, DSX- und HMT-Serie,
- Vorspannwerkzeuge der HM, GT und EAJ-Serie.

Software-	INFORMATE Abonnements
Modell-Nr.	Für nähere Informationen wenden Sie sich bitte an Enerpac.
BS01PP	Bolting Software 1 Person Kauf
BS01PAS	Bolting Software 1 Person jährliche Unterstützung
BS05PP	Bolting Software 5 Personen Kauf
BS05PAS	Bolting Software 5 Personen jährlicher Support

▲ Standardmäßiges Flansch-Berechnungsmenü (INFORMATE)

Das Verschraubungssoftwarepaket von Enerpac umfasst:

- Bolt-Up Online-Bolzenlastrechner. Kostenloser Zugang und kostenlose Nutzung unter www.enerpac.com.
- INFORMATE Hochentwickelte Berechnungs- und Verfahrenssoftware. Kontaktieren Sie Enerpac für Benutzerlizenzen und speziellen Support.
- IDMS Integrity Data Management System Ein komplettes Integrity Assurance-Projektmanagementpaket für die Verwaltung von Schraubverbindungen über den gesamten Lebenszyklus. Kontaktieren Sie Enerpac für Benutzerlizenzen und speziellen Support.

Bolt-Up

Bolt-Up ist ein benutzerfreundlicher Online-Rechner, der auf dem Informate-Rechner basiert. Mit diesem Rechner kann die Bolzenbelastung für Folgendes zuverlässig und reproduzierbar berechnet werden:

- ANSI 16.5 Standard-Vorschweißflansche aus Kohlenstoffstahl mit einer begrenzten Auswahl an Verschraubungsmaterialien, ausgewählten Dichtungsoptionen und einem festen Schmierwert.
- Die Eingabe grundlegender Informationen zur Verschraubungskonfiguration ermöglicht Bolt-Up Folgendes zu bestimmen: Verschraubungsspannung, Verschraubungsbelastung und erforderliches Drehmoment. Diese Ergebnisse werden neben den grundlegenden Flansch- und Schraubeninformationen angezeigt, z. B. Verbindungsstärke und Bolzengröße/-anzahl.

412 www.enerpac.com

Verschraubungssoftware

▲ Engineered-Joint-Menü (INFORMATE)

INFORMATE Software zur Berechnung der Bolzenbelastung

INFORMATE kann für eine Vielzahl von Flanschverbindungen und Klemmverbindungen in nahezu jeder Situation von der Prozessleitung bis hin zu kundenspezifischen Flanschverbindungen eingesetzt werden.

- Berechnen Sie Verschraubungsspannungen und Verschraubungsbelastungen, bestimmen Sie den Werkzeugdruck für Drehmoment- und Spanngeräte von Enerpac, analysieren Sie bestehende und testen Sie kundenspezifische Verbindungen.
- Umfangreiche Materialdatenbank mit allen g\u00e4ngigen Normen:
 - Bekannte und branchenspezifische Schmierstoffe
 - 200+ Verschraubungsmaterialien
 - 500+ Flanschmaterialien
 - 60+ Dichtungsmaterialien
- Engineered Joint Calculation Features ermöglichen verschiedene Arten von Verschraubungsanwendungen für nicht-runde oder konstruktive Anwendungen.
- Informate wird direkt auf dem Desktop installiert oder über das Internet aufgerufen. Informate ist in einer Version erhältlich, die den Kundenanforderungen entsprechend konfigurierbar ist und mehrere internationale Normen sowie die neuesten und zukünftigen gesetzlichen Daten enthält, wenn sie mit einem Wartungspaket geliefert wird.

Clamp-Menü (INFORMATE)

Integrity Data Management System (iDMS)

iDMS ist auf Informate basiert und ein flexibles System zur Datenverarbeitung und Arbeitsplanung, das speziell für Anwendungen bei Verschraubungen entwickelt wurde.

Im System werden sämtliche Daten des Lebenszyklus aller entscheidenden Verschraubungen in einer Anlage gespeichert. Es erleichtert die Planung, gewährleistet die Zuverlässigkeit der Verschraubung und reduziert den Konstruktions- und Wartungsaufwand sowie die betreffenden Kosten.

- Das System bietet Managern und Technikern wesentliche Informationen über die bei der Montage verwendeten Verbindungskomponenten, spezifiziert darüber hinaus die Werkzeuge und die Drehmoment- oder Spannungswerte, um eine leckagefreie Verbindung zu gewährleisten.
- Ermöglicht Planern und Wartungstechnikern, schnell Arbeitspakete mit allen Unterlagen zu erstellen und diese bis zur Fertigstellung zu verfolgen.
- Wann immer an einer Verbindung gearbeitet wird, kann auf die gesamte Vorgeschichte und Erfahrung dieser Verbindung zurückgegriffen werden, sodass vor der Montage und dem Anziehen der Verbindung proaktiv auf die besonderen Anforderungen der Verbindung eingegangen werden kann.

Mit iDMS stehen maßgeschneiderte Lösungen zur Verfügung, die auf die Anforderungen der Kunden zugeschnitten sind, z.B.:

- Eingebetteter Informate-Verschraubungsrechner
- Export und Import von Daten in Asset-Management-Systeme
- Datenexport zur Aktualisierung der Kundendokumentation
- Farbcodierung der Verbindung ermöglicht eine sofortige Überprüfung des Status.

Kontaktieren Sie Enerpac für eine Benutzerlizenz